Get Observed Information Rates
Source:R/f_analysis_boundary_recalculation.R
getObservedInformationRates.Rd
Recalculates the observed information rates from the specified dataset.
Usage
getObservedInformationRates(
dataInput,
...,
maxInformation = NULL,
informationEpsilon = NULL,
stage = NA_integer_
)
Arguments
- dataInput
The dataset for which the information rates shall be recalculated.
- ...
Ensures that all arguments (starting from the "...") are to be named and that a warning will be displayed if unknown arguments are passed.
- maxInformation
Positive value specifying the maximum information.
- informationEpsilon
Positive integer value specifying the absolute information epsilon, which defines the maximum distance from the observed information to the maximum information that causes the final analysis. Updates at the final analysis in case the observed information at the final analysis is smaller ("under-running") than the planned maximum information
maxInformation
, default is 0. Alternatively, a floating-point number > 0 and < 1 can be specified to define a relative information epsilon.- stage
The stage number (optional). Default: total number of existing stages in the data input.
Details
For means and rates the maximum information is the maximum number of subjects
or the relative proportion if informationEpsilon
< 1;
for survival data it is the maximum number of events
or the relative proportion if informationEpsilon
< 1.
See also
getAnalysisResults()
for usinggetObservedInformationRates()
implicit,www.rpact.org/vignettes/planning/rpact_boundary_update_example
Examples
if (FALSE) { # \dontrun{
# Absolute information epsilon:
# decision rule 45 >= 46 - 1, i.e., under-running
data <- getDataset(
overallN = c(22, 45),
overallEvents = c(11, 28)
)
getObservedInformationRates(data,
maxInformation = 46, informationEpsilon = 1
)
# Relative information epsilon:
# last information rate = 45/46 = 0.9783,
# is > 1 - 0.03 = 0.97, i.e., under-running
data <- getDataset(
overallN = c(22, 45),
overallEvents = c(11, 28)
)
getObservedInformationRates(data,
maxInformation = 46, informationEpsilon = 0.03
)
} # }